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1. Introduction 

Graphics processing units (GPUs) are the most common accelerators found in today’s computing 

systems.  All modern computer systems host some sort of a GPU processor ranging from low-

end integrated video processors to high-end peripheral component interconnect (PCI)-Express 

graphics cards.  Due to its highly parallel and demanding computational requirement of graphics 

applications, a dedicated processor known as a GPU assists a central processor in video 

processing.  This specialized nature of GPUs for computing display operations makes GPUs 

faster than central processing units (CPUs) at graph-like problems with an ample amount of data 

parallelism.   

As evidenced by architectural differences, purposes and goals are different for GPUs and CPUs.  

The major difference in terms of chip’s real estate is the allocation of processing elements and 

cache.  For example, out of 291 million transistors, 19 million are dedicated to execution core in 

Intel Core 2 Duo processors (1) and about half of chip’s area is designated for cache.  On the 

other hand, GPUs typically have hundreds of floating-point execution units and large context 

switch information storage space, resulting in a small area remaining for cache.  The goal of a 

GPU architecture design is to employ hardware multithreading and single instruction multiple 

data (SIMD) execution. 

Supported behind the driving market force of video game industry, GPU processors have become 

inexpensive and powerful piece of silicon.  As of January 2009, Nvidia’s GeForce GTX 285 

graphics cards are rated at slightly above teraflop of computing power.  Such capability opens an 

opportunity for an unconventional high performance computing with GPU technology.  The 

power of supercomputing is now possible in a smaller footprint at a reduced cost by leveraging 

graphic processor’s powerful engine.  Originally designed for processing graphics, the role of a 

GPU is increasingly targeting general-purpose and data-parallel applications (2). 

2. Algorithm for the Synthetic Aperture Radar 

The ultra-wideband synthetic aperture radar system has been developed and mounted on a 

vehicle for a prototype and testing by researchers at Sensors and Electron Devices Directorate 

(SEDD).  The radar is designed for obstacle avoidance and concealed target detection.  Specific 

parameter details are outlined in figure 1. The radar’s platform is equipped with two transmitting 

antenna and an array of sixteen receiving antennas.  An advantage of this radar is its ability to 

operate with relatively slow and inexpensive analog to digital converters, making the system 

affordable.  Further detailed information regarding to the specifics of the radar system is 

described in (3). 
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Figure 1.  Radar parameters. 

Conceptually, the radar algorithm can be broken down into GPS position processing, signal filter 

processing, and image formation.  The algorithm’s original source code, developed by SEDD 

researchers, was written in MATLAB.  The first step was to convert the MATLAB code into 

standard C programming language to improve performance.  The radar algorithm was profiled in 

attempt to locate compute intensive sections of the code.  Profiling results indicated that 84.6% 

of work occurred inside a back-projection imaging function, which performs a summation of 

distance to time correlations.  The profile results are provided in figure 2.  Top functions profile 

illustrates a cumulative time spent inside top-level functions which conveniently lists functions 

worth targeting for optimizations.  Back-projection and interp1 are parts of the imaging 

algorithm, and FixMoving and FilterData resides in the signal processing step. 

 

Figure 2.  Profile output. 

                                                      
MATLAB meaning “matrix laboratory.”  
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The radar platform travels and gathers data for 12 meters (m) before generating the first output 

image.  Afterwards, every image is formed for every 2 m, combining previously collected data to 

satisfy 12 m dataset.  As denoted by the simplified representation in figure 3, image 

reconstruction generates an output image of grid 100×250 pixels by determining the roundtrip 

time of the radar’s signal propagation, which is calculated from computing the distance from a 

transmitter to the pixel and back to a receiver.  By calculating the propagation time of a reflected 

signal, the pixel’s signal strength at that time can be indexed from previously collected signal 

data.  Basically, the back-projection imaging technique is a distance to time correlation algorithm 

where data records across the apertures are coherently summed.  More detailed and 

comprehensive description of the back-projection algorithm can be found at (4). 

The imaging computation of propagation times for each sensor at different positions involves 

numerous and independent floating-point distance calculations.  For instance, the image size of  

100×250 pixels and 800 aperture data collected equates to 20 million propagation time 

computations.  With a single-issue peak shader arithmetic performance of 345 GFLOPS, 

Nvidia’s graphics card became the promising target architecture for improving the radar’s 

processing speed. 

 

Figure 3.  Back-projection algorithm. 

3. Parallelizing CPU Code 

Parallel versions of the CPU code were developed to fully utilize all available hardware within a 

processor.  Parallel languages MPI and OpenMP were applied to take advantage of all the cores 

in a multi-core architecture.  MPI is the de facto standard for parallel programs on distributed 
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memory systems.  It allows many compute systems to communicate by communications protocol 

API.  As for OpenMP, it is designed for multiprocessing on shared memory architectures.  Here, 

method of parallelization is achieved through the implementation of multithreading.  Multi-core 

parallelized versions of the back-projection routine were written in both MPI and OpenMP for 

comparison analysis. 

To further improve the processing speed of the CPU implementation, streaming SIMD 

extensions (SSE) operations were incorporated to assign work to all available floating-point 

execution units within Intel and AMD processors.  Introduced with Pentium III, SSE is a SIMD 

instruction set extension to x86 architecture.  For example, Xeon processors have eight SIMD 

floating-point arithmetic logic units (ALUs) per core (two 4-width vector instructions per clock) 

capable of performing 16 floating-point operations per clock for a dual-core chip.  The results 

will reveal that the final performance ranges greatly depending on software and programming 

method, which provides a tool to control how effectively the underlying hardware can be 

utilized. 

4. Compute Unified Device Architecture (CUDA) 

CUDA is the Nvidia’s development toolkit that allows programmers to access the massively 

parallel graphics cards for general-purpose computing.  It is a Nvidia’s strategy for marketing 

GPU parallel computing.  CUDA allows scientist and engineers to easily harness the powerful 

arithmetic capabilities of GPUs in solving computationally challenging problems.   

To simplify, computation on a GPU can be viewed as a three step process: copy data to a GPU 

memory, operate GPU processing, and copy the results back from the GPU memory.  To keep 

the learning curve at minimum, Nvidia’s programming model simply adds extensions to the 

popular language C.  From programmer’s perspective, CUDA provides communication API for 

data transfers to a GPU accelerator and a kernel function that executes on a GPU device.  In this 

paradigm, only a key function needs be translated into CUDA and rest of the code can remain in 

C.  This approach has the benefit of quick integration with CUDA programming environment.  

The code that remained in C will execute in a serial manner on a CPU and when the process 

reaches to a kernel, the execution of parallel GPU computing will begin.  A complete CUDA 

programming guide is outlined in (5).  Note that a GPU is providing an assistance and hopefully 

acceleration to a standalone CPU processing by working side by side in performing computation. 

One of the main execution model difference between a CPU and a GPU is the hardware 

multithreading.  CPU processors work to execute a single instruction as fast as possible, whereas 

GPU units strive to increase the throughput speed of a group of instructions.  Accordingly, GPU 

devices keep more active threads than the available compute resources (6).  These large thread 

contexts are assigned and kept for each core such that switching of a stalled thread to an 
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executable thread incurs no penalty.  Instead of having a large cache to address memory latency, 

GPU devices sacrifice storage space in order to keep the execution thread information.  

Hardware multithreading is how a GPU hides the main memory latency taking hundreds of clock 

cycles.  In Nvidia hardware, the number of active threads per multiprocessor is 768 (5).  Since 

GeForce 8800 GTX has 16 multiprocessors, minimum of 12,288 independent threads are 

recommended for optimal GPU designs. 

5. GPU Implementation 

For GPU mapping, the output image of 100×250 pixels was decomposed into threads where each 

pixel was assigned to a GPU thread.  As a result, a total of 25,000 CUDA threads were assigned 

for this application.  A CUDA thread is a basic work element and the total number of threads 

represents the amount of parallel work.  The core distance calculations consist of subtractions of 

x, y, z positions, applying square root operations, and correlating distance to time with constant 

division and addition.  A part of source code representing the core calculations inside the CUDA 

kernel of the image formation algorithm is provided in figure 4. 

 

Figure 4.  Radar processing steps and CUDA source code. 

5.1 Basic Textbook Optimizations 

Similar to C code optimization techniques, the computational load within the main loop of the 

kernel was reduced by substituting division and constants. The code transformation is outlined 

below: 
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Code 1: 

for 

    index = (dr+dt) / (3e8 * samp) – (tacq / samp)  

Code 2: 

coeff2 = 1/3e8*samp 

coeff3 = -tacq/samp 

for 

    index = (dr+dt)*coeff2 + coeff3 

This substitution had a slight impact on kernel execution time.  As it will be discuss in the 

following section, computational load alone does not affect the performance of the hardware 

multithreading execution model.  Overall performance is related to the combination of memory 

and arithmetic intensity. 

5.2 Memory Optimizations 

Major difference between C and CUDA is the exposed memory hierarchy in GPUs to 

programmers.  Because accessing GPU’s global memory requires hundreds of clock cycles to 

complete, an order magnitude in performance difference can result depending on memory 

manipulation and requirement.  Shared memory, texture cache, and constant cache are provided 

on-chip to address this global memory latency issue.  Moreover, memory access time can be 

reduced via a technique called coalescing where instead of multiple individual transfers, memory 

transfer is grouped.  With correct alignment and requesting a contiguous section of memory, the 

penalty from accessing global memory can be reduced.  Therefore, a problem should be carefully 

decomposed to fit these criteria. 

The use of on-chip memory elements was applied whenever possible.  GPS locations x, y, and z 

were stored in constant memory to benefit from its cached structure.  The image grid positions 

and intermediate image values were stored in the fast shared memory.  Due to the large size 

requirement of 16.8 MB, data input array of signal strength values can only be stored in the 

global memory.   

One modification involved increasing the number of threads per block such that the alignment 

requirement is satisfied for coalesced stores.  The number of threads per block must be a multiple 

of 16 for the memory access to be aligned to 64 bytes.  However, due to a small number of store 

operations in the GPU kernel program, increasing the number of threads from 250 to 256 threads 

to abide the alignment (albeit increasing amount of work) had a negligible impact on 

performance. 

5.3 Data Reuse 

The radar imaging algorithm builds upon its previous data.  In order to generate an output image, 

12 m of acquired data is required.  However, image is created every 2 m by merging previously 

gathered 10-m data with a new set.  Therefore, for every image creation after the initial stage, 
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only 2 m of new data need to be transferred over a PCI-Express bus.  Previous data are kept on a 

GPU card and device to device transfer occurs to this dataset.  Between kernel calls, the overlap 

data are not being cleared.  Figure 5 illustrates the data and sub-image correlation.  The sub-

image 1 needs data from 251–290 and sub-image 2 reads from data starting from 258–298.  Note 

that two sub-images shared the data in range 258–290, which can be reused instead of 

retransmitting. 

 

Figure 5.  Overlapped input data 

5.4 Ratio of Computation to Memory 

Another source code modification involved applying more computations to the current GPU 

kernel.  Quick analysis of the kernel suggests that the GPU performance is limited by the global 

memory access, which determines the signal strength at a particular distance.  The inner loop of 

the kernel contains seven floating-point additions, six subtractions, seven multiplications, two 

square roots, and one global memory access.  Additions, subtractions, and multiplication take 

four clock cycles, square roots take 16 clock cycles, and global memory latency is 400–600 

clock cycles.  This means arithmetic computations sum up to be 112 clock cycles and the worse 

case memory latency is 600 clock cycles.  However, hardware scheduler would attempt to hide 

the global memory latency via hardware multithreading.  To investigate the effects of 

computation and memory instructions, execution times are measured as computations and 

memory accesses are increased.  First, elapsed time was measured as a square root instruction is 

added to the current GPU kernel.  Second, in order to measure only the computational increase in 

absence of global memory, memory access instruction was removed from the kernel and the 

elapsed time was measured again as square root instruction is added.  In the absence of a 

memory operation, adding more square root instructions naturally increased computational time 

as expected.  As for the case with a global memory instruction present, square root addition had a 

minimal performance effect when the number of square root additions was below eight 

instructions, which is illustrated in figure 6.  This suggests that the GPU kernel is unable to fully 
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mask the global memory access time due to its lack of arithmetic computations.  Therefore, 

back-projection algorithm was reanalyzed with the goal to maximize the number of computations 

on a GPU.   

By porting floating-point calculations to the GPU kernel will only slightly increase execution 

time on GPU device, yet relieves the CPU’s burden.  In GPU computing, optimization is a 

balancing act of ALU to memory access ratio, registers usage, number of threads, and shared 

memory. 

 

Figure 6.  Effect of increasing computation. 

5.5 Increasing Assigned Parallelism 

To study the effect of the amount of parallelism, the number of thread assigned was increased by 

loop unrolling or increasing the output image dimension.  Instead of computing on the image size 

of 250×100, the image size was scaled up to 250×400, which resulted in 100,000 parallel CUDA 

threads.  This increases the number of threads by a factor of four.  To match the results of the 

previous algorithm, a reduction step is applied to the 250×400 image at the end to produce a final 

250×100 image.  Performance measurements showed a slight increase in computational time, 

indicating that an ample amount of parallelism already exists. 

5.6 Output Discrepancies 

The output image results for CPU and GPU implementations fail to match exactly.  Some pixels 

within the image match closely and some are within two significant figures.  These differences 

are due to the small differences in index calculation.  Within the core of the image reconstruction 

algorithm, index is calculated and then the rounded value is used to lookup the signal strength.  

Suppose data[0] is 10200 and data[1] is 10400.  If CPU computes index to be 0.49999999 and 

GPU computes index to be 0.50000000, then the rounded values are 0 and 1, respectively.  Then 

the pixel values would be 10200 for CPU and 10400 for GPU.  Hence, indexes that falls very 

close to the borderline tends to cause large discrepancies in the signal output. 
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6. Results 

The execution time measurements of back-projection routine and overall radar processing are 

presented.  The measurements are based on the field gathered data set of 274 m.  The total time 

includes file I/O, GPS position processing, signal processing, imaging technique, and 

visualization.  Back-projection time focuses only on the imaging function call.  The radar 

platform’s theoretical speed can be derived from the total time whereas back-projection time 

allows speedup comparisons between CPU and GPU processors.  For the GPU case, back-

projection time includes GPU kernel setup and PCI bus data transfer overhead, as shown below:  

GPU execution time = setup + data transfer + kernel 

The source code was tested on various systems composed of different processors and operating 

systems.  The list of investigated processors is shown in table 1.  Since the imaging algorithm of 

the radar involves heavy single-precision computations, it is logical to compare the number of 

available 32-bit floating-point units and clock frequency for each architecture.  Note that even a 

dual-core CPU processor has 16 floating point units available for parallel processing, although 

programming them is not trivial.  Putting memory constraints aside, a theoretical single-precision 

compute power of CPUs and GPUs can be estimated from clock frequency and total number of 

floating-point units.  For example, GeForce 8800 GTX has 128 ALUs clocked at 1.35 GHz 

where each ALU capable of computing one 32-bit multiply-add (2 floating-point operations) per 

clock, which sums to 128*1.34*2 = 345 GFLOPS. 

Table 1.  Investigated processors. 

Processor Type 
Floating-point 

Units 
Clock Frequency 

Theoretical 

Single-precision 

FLOPS 

Intel Xeon 5160 16 3.0 GHz 48 GFLOPS 

AMD Opteron 2350 32 2.0 GHz 64 GFLOPS 

Intel Xeon E5450 32 3.0 GHz 96 GFLOPS 

Nvidia Quadro FX 570 16 0.92 GHz 29 GFLOPS 

Nvidia Quadro FX 3600M 64 1.25 GHz 160 GFLOPS 

Nvidia GeForce 8800 GTX 128 1.35 GHz 345 GFLOPS 

Nvidia Quadro FX 5600 128 1.35 GHz 345 GFLOPS 

Nvidia Tesla C870 128 1.35 GHz 345 GFLOPS 

6.1 CPU Back-projection Results 

For the CPU processors, OpenMP, MPI, and SSE executions had a great impact on performance 

as shown in figure 7.  OpenMP and MPI divide the code to run on multiple cores in parallel.  The 

use of SSE instructions enables 128-bit SIMD operations.  As indicated by the CPU timing 
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results, parallel version of the code can improve performance by a factor of six.  Comparing 

GeForce 8800 GTX and Xeon 5160 (processors with similar release date), depending on the 

CPU’s software version, speedup values range from 4.5X for parallel version to 30X for single-

threaded version. 

 

Figure 7.  CPU implementation results. 

6.2 GPU CUDA Back-projection Results 

CUDA program was tested on various Nvidia graphics cards.  Quadro 3600M was a mobile GPU 

inside a Dell laptop running Ubuntu.  Quadro FX 570 was a basic card inside a Windows 

machine.  Quadro FX 5600 cards was a part installed in a 20 node cluster.  GeForce 8800 GTX 

was a video card for a local Linux machine.   The back-projection time measurements are 

presented in figure 8.  On the GeForce 8800 GTX card, assuming 27 floating-point instructions 

inside the core back-projection loop, 40 GFLOPS was achieved.  Because CUDA provides 

transparent scalability, code modification was not necessary for transferring and executing on 

wide range of GPU devices. 
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Figure 8.  GPU implementation results. 

To conduct a detailed timing analysis, back-projection performance was further profiled to 

understand the time distribution of kernel and setup overhead introduced by offloading work to a 

coprocessor.  For the GeForce 8800 GTX card, 25% of back-projection computation time was 

needed for host and GPU memory setup.  Breakdown of results for various GPU cards are listed 

in table 2.  Although similar profile results can be generated using the CUDA profiler, the default 

setting focuses only on the GPU time whereas measuring time with host more accurately 

represents the whole profile and offers greater control.  Because calling a GPU kernel function is 

asynchronous and returns immediately, a blocking memory statement is inserted to measure a 

kernel time. 

Table 2.  Back-projection timing breakdown. 

Graphics Card 
Back-projection 

(s) 

Kernel 

(s) 

GPU Memory 

Setup (s) 

Host Memory 

Setup (s) 

Kernel 

Percentage 

GeForce 8800 GTX 1.40 1.05 0.30 0.022 75% 

Tesla C870 1.41 1.10 0.26 0.023 78% 

Quadro FX 5600 1.52 1.10 0.33 0.051 72% 

Quadro FX 3600M 2.64 2.14 0.41 0.025 81% 

Quadro FX 570 8.80 8.08 0.69 0.020 91% 

6.3 Hybrid Radar Processing Results 

In order to obtain a maximum benefit from an accelerator, parallel execution of CPU and GPU 

processes is the most ideal execution case.  Here, CPU continues to compute after launching a 

GPU process.  Complete radar solution follows this concept by overlapping CPU and GPU 

computations.  In hybrid computing solution, POSIX Threads (Pthreads) was used to implement 

the asynchronous CPU/GPU execution.  Basically, GPU processing time is being masked by 

continuing CPU to work.  For CPU and GPU to operate in parallel, imaging algorithm was 

divided into the back-projection and data interpolation.  The back-projection is assigned to a 

GPU device and data interpolation is assigned to a CPU.  This way, CPU prepares for the next 
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set of data while GPU is crunching the back-projection computations.  This non-blocking 

arrangement effectively hides the GPU execution from the system operation time.  Total 

processing time for the radar system is presented in figure 9.  The processing time of  

7.2 seconds (s) for 274 m data translates to a possible platform speed of 85 mph. 

 

Figure 9.  Total processing time of the radar system. 

7. Recursive Sidelobe Minimization (RSM) 

Enhanced imaging technique called recursive sidelobe minimization was developed by 

researchers from SEDD to improve noise and sidelobe effects of the radar imagery (7).  The 

technique is based on the two characteristics observed from purposefully removing aperture data 

set.  Discarding 20% of aperture data set results in inferior images compared to the images 

generated using complete data set.  However, when two images of reduced data set were 

compared against each other, the amplitude responses of the target did not change while the 

amplitude response of the sidelobes fluctuated.  Therefore, applying minimum operation to the 

two randomly generated sparse data set images resulted in a superior image.   

The RSM algorithm generates 50 images of randomly removed data set and performs minimum 

operations to those images.  Before minimum operation can be performed, envelope of the image 

is first computed by applying Hilbert transform filter, which consists of Fast Fourier Transform 

(FFT).  FFT is applied to downrange pixel values of 100 elements.  Hence, for optimal operation, 

decomposition needs to be along the downrange of output image in order adhere to the 

requirements for coalesced reads and writes.  Not knowing this characteristic beforehand, the 

initial implementation code written in row-wise thread decomposition was modified into a 

column decomposition.  

7.1 Optimizations for CUDA RSM 

This section outlines the several CUDA optimization techniques employed on the GeForce 8800 

GTX for better performance.  First two optimizations improved GPU’s memory usage.  Utilizing 

shared memory instead of global memory for random array reduced the time from 
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310 s to 108 s.  Another optimization in relation to efficient memory usage was assigning more 

threads per block in order to meet the divisible by 16 requirement for coalesced memory 

operation.  Instead of 100 elements in a column, 112 elements were assigned to align memory 

accesses for the coalesce store, which improved the time by a factor of 1.4x.  Third optimization 

involved a traditional reducing workload in the compute intensive inner loop.  Index value 

lookup was pulled out of the main loop by storing the data signal values directly, which yielded a 

1.8x speedup.  Forth optimization reduced the total number of signal memory access by 

subtracting from an original image.  Rather than building up to an image using 80% of data, 20% 

of data is removed from an original image, which resulted in less memory lookup.  Next 

optimization implemented a customized N
2
 complexity discrete Fourier transform (DFT) 

algorithm where imaginary input and real output values were ignored.  At first, the CUDA 

version of DFT did not outperform the CPU’s FFT due to its small input size of 100 elements.  

However, through splitting the kernel into forward and reverse DFT reduced register usage and 

increased GPU’s occupancy.  Although splitting kernel added extra memory operations, higher 

occupancy improved overall performance.  Sixth optimization involved distributing array 

initialization work of transferring data from global to shared memory.  Instead of assigning work 

to one thread, the initialization step was divided among multiple threads.  At this point, CUDA 

profile showed 58% of compute time being spent inside the envelope function.  To mitigate the 

compute requirement of the envelope routine, fast math compiler flag was used to accelerate the 

DFT computation.  Fast math compiler flag computes higher level math functions in special 

function units (SFU) at a modestly reduced precision.  Updating CUDA driver also had a slight 

improvement.  After a variety of optimization techniques, final execution time was measured to 

be 13.6 s.  Table 3 summarizes the optimizations where the results are rounded up for readability 

and to account for GPU’s execution time variance.  It is worth mentioning that for some cases of 

GPU optimizations (coalesce store, N
2
 DFT, and splitting kernel), adding more work resulted in 

a faster execution time.  

Table 3.  RSM optimization steps. 

 Time (s) Speedup 

Reference CUDA 310  

Shared Memory 108 2.87x 

Coalesce Store 73 1.47x 

Reduce Load Instruction 40 1.82x 

Subtraction from Original 33 1.21x 

DFT 29 1.13x 

Distribute Array Initialization 25 1.16x 

Use Fast Math 15 1.66x 

Driver Update 14 1.07x 

Profile breakdown of the final RSM algorithm was 18.6% envelope and minimum function, 

79.4% image formation, and 2.0% data transmission.  Comparing only the image reconstruction 

kernel of the original versus RSM back-projection (excluding envelope, minimum, and random 
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calculations), the execution time increased from 1.04–8.97 s.  The effect of 10x memory 

operation (50*20%) increase on a GPU resulted in the kernel execution time increase of 8.6x 

7.2 RSM Imaging Technique Results 

The bar graph of the performance results for CPU and GPUs is depicted in figure 10.  The 

measurements reflect the processing time of the RSM imaging technique excluding other radar 

steps such as GPS processing or signal filtering steps, since only the imaging algorithm was 

redesigned.  The Intel CPU result represents a single threaded C language implementation.  

Nvidia Quadro FX 3600M represents the laptop mobile GPU with 64 CUDA cores.  Nvidia 

GeForce 8800 GTX is the workstation PCI card with 128 CUDA cores.  And AMD Radeon HD 

4870 is the ATI GPU system with 800 stream processing units included for comparison, 

implemented by Dr. Richie.  Next to the processor type descriptions, the year in which the 

hardware was released are included inside the parenthesis.  Comparing 64 core mobile GPU to 

128 core PCI card, the RSM code scales close to linear, which is promising for modern GPU 

cards with 240 cores. 

 

Figure 10.  RSM performance results. 

8. Conclusion 

All processing units are now following a many-core architecture trend.  Major challenge to 

address is the fact that parallel hardware requires parallel programming to take advantages of 

multiple available resources.  The concept applies to a general-purpose CPU as well.  The best 

CPU implementation of back-projection called for parallelizing via OpenMP and incorporating 

SSE instructions.  Because achieving performance is not automatic and requires an effort, it is 

worth considering potential algorithms for mapping to a GPU accelerator.  In addition to central 

processors, pervasive GPUs can assist in computationally challenging tasks.   

With CPU/GPU hybrid solution, the real-time computational requirement was satisfied for the 

Synthetic Aperture Radar (SAR) system.  The advantages of GPU assisted computing are 

programmability and cost.  Software development model is an essential component of any 
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processor technology.  GPU programming model builds and extends to the popular C software, 

hence keeping the changes and learning curve to a minimum.  Once the concept of thread 

parallelism is grasped, CUDA programming is not much more difficult than standard C.  

Moreover, graphics cards are affordable and widely available commodity components.  GPU 

computing leverages a powerful chip with well established technology and gaming industry’s 

support.  As a result of these characteristics, GPU processors are expanding its applicable area 

from desktop media applications to supercomputing. 
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List of Symbols, Abbreviations, and Acronyms 

ALU arithmetic logic unit 

AMD Advanced Micro Devices, Inc. 

API application program interface 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture 

DFT discrete Fourier transform 

DoD Department of Defense 

ENS/C4I Electronics, Networking, and Systems/Command, Control, Communications, 

Computers, & Intelligence 

FFT Fast Fourier Transform 

GPU Graphics Processing Unit 

HPCMO High Performance Computing Modernization Office 

m meter 

PCI peripheral component interconnect 

PET Productivity Enhancement and Technology Transfer (ack) 

RSM Recursive Sidelode Minimization 

s second 

SAR Synthetic Aperture Radar 

SEDD Sensors and Electron Devices Directorate 

SFU special function units 

SIMD single instruction multiple data 

SSE streaming SIMD extensions 
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